

8 - 18 GHz Wideband Low Noise Amplifier

Features

- ◆ Frequency Range: 8.0 18.0GHz
- 23dB Nominal gain
- ◆ Low Midband Noise Figure < 2 dB
- ◆ Input Return Loss > 12 dB
- ◆ Output Return Loss > 12 dB
- ◆ Single +3V Operation
- ◆ DC decoupled input and output
- ◆ 0.15 µm InGaAs pHEMT Technology
- Chip dimension: 3.0 x 2.1 x 0.1 mm

Functional Diagram

Typical Applications

- Radar
- Military
- Test equipment and sensors

Description

The AMT2152021 is a Low Noise Amplifier operating in 8.0-18.0 GHz frequency range. The LNA uses 3 stages of amplification and provides 23 dB of gain with an impressive mid-band noise figure of less than 2 dB. The amplifier is very well matched to 50Ω over the entire operating bandwidth typical input and output return losses better than 12 dB. The LNA has a minimum P1 dB of 10 dBm. The amplifier operates on a single +3V DC supply and requires no external components for reliable operation. The Circuits grounds on the die are provided through vias to the backside metallization. The die is fabricated using a reliable $0.15\mu m$ pHEMT technology.

Absolute Maximum Ratings⁽¹⁾

Parameter	Absolute Maximum	Units
Positive DC voltage	+7	V
RF input power	+16	dBm
Supply Current	150	mA
Storage Temperature	-55 to +150	°C
Operating Temperature	-40 to +85	°C

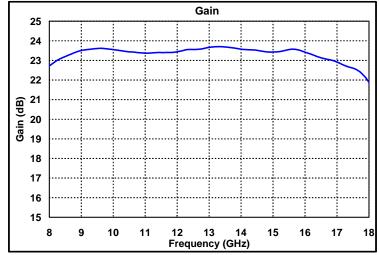
1. Operation beyond these limits may cause permanent damage to the component

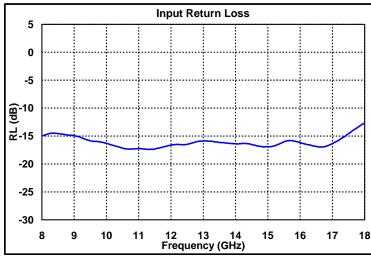
Astra Microwave Products Limited, Hyderabad, INDIA

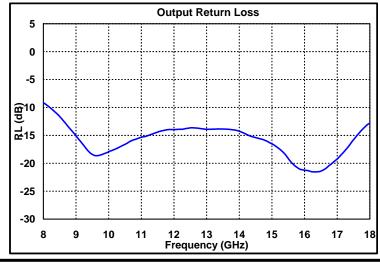
Electrical Specifications @ $T_A = 25$ °C, Zo =50 Ω ; Vd1 = Vd2 = Vd3 = 3V

Parameter	Min.	Тур.	Max.	Units
Frequency Range	8.0	_	18.0	GHz
Gain (1)	21	23	25	dB
Gain Flatness ⁽¹⁾	-	± 0.8	-	dB
Noise Figure (mid-band)	-	2	2.5	dB
Input Return Loss ⁽¹⁾	10	12	-	dB
Output Return Loss (1)	10	12	-	dB
Output Power @ 1 dB compression (3)	7	9	-	dBm
Third Order Intercept Point	-	19	-	dBm
Supply Current	60	75	90	mA

Note:

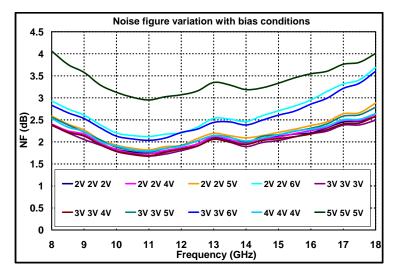

- 1. Measured on-wafer.
- 2. Test Fixture measurements
- 3. Measurement at 8GHz

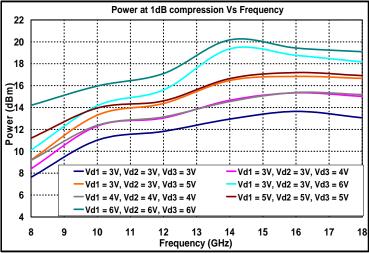

Rev. 1.0 January 2008



On-Wafer data

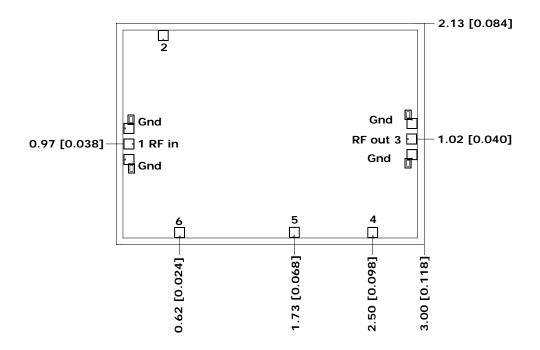
Vd1 = Vd2 = Vd3 = 3V, Current =75 mA, $T_A = 25$ °C


Astra Microwave Products Limited, Hyderabad, INDIA



Test Fixture data

 $T_A = 25 \,{}^{\circ}C$

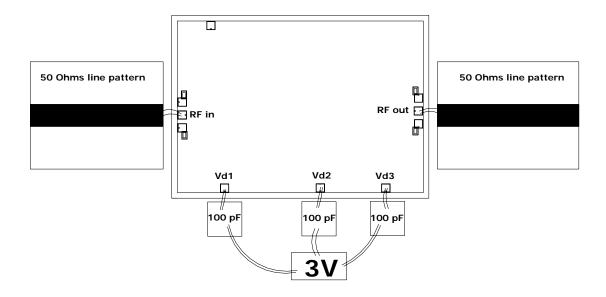


Rev. 1.0 January 2008

Mechanical Characteristics

Units: millimeters (inches)

Note:


1. All RF and DC bond pads are 100μm x 100μm

Pad no. 1 : RF In
Pad no. 2 : NC
Pad no. 3 : RF Out
Pad no. 4 : Vd3
Pad no. 5 : Vd2
Pad no. 6 : Vd1

Rev. 1.0 January 2008

Recommended Assembly Diagram

Note:

- Two 1 mil (0.0254mm) bond wires of minimum length should be used for RF input and output.
- 2. 0.1 µF capacitors may be additionally used as a second level of bypass at the power supplies for reliable operation.

Die attach: For Epoxy attachment, use of a two-component conductive epoxy is recommended. An epoxy fillet should be visible around the total die periphery. If Eutectic attachment is preferred, use of fluxless AuSn (80/20) 1-2 mil thick preform solder is recommended. Use of AuGe preform should be strictly avoided.

Wire bonding: For DC pad connections use either ball or wedge bonds. For best RF performance, use of $150 - 200 \mu m$ length of wedge bonds is advised. Single Ball bonds of $250-300 \mu m$ though acceptable, may cause a deviation in RF performance.

GaAs MMIC devices are susceptible to Electrostatic discharge. Proper precautions should be observed during handling, assembly & testing

All information and Specifications are subject to change without prior notice